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Correlations and symmetry breaking in gapped matrix models
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Some puzzles which arise in matrix models with multiple cuts are presented. They are present in the
smoothed eigenvalue correlators of these models. First a method is described to calculate smoothed eigenvalue
correlators in random matrix models with eigenvalues distributed in a single cut. Previous known results are
reproduced. The method is extended to symmetric two-cut random matrix models. The correlators are written
in a form suitable for application to mesoscopic systems. Connections are made with the smooth correlators
derived using the orthogonal polynomial method. A few interesting observations are made regarding even and
odd density-density correlators and crossover correlators inZ2 symmetric random matrix models. A symmetry
breaking parameterC is identified in the smooth correlators for allb51, 2, and 4.@S1063-651X~99!02504-0#
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I. INTRODUCTION

Matrix models have been used in a wide variety of app
cations, starting from quantum chaotic systems to conden
matter, quantum chromodynamics, and string theory. The
cent period has seen a large increase in our understandi
the properties of these models. In this work we have b
interested in highlighting some unusual properties of two-
random matrix models that have arisen in our study. T
results are unexpected as they are not seen in matrix mo
when the density of eigenvalues has a connected sup
Indeed there it is well known@1,2# that the correlator is uni-
versal, i.e., independent of the specific potentialV which
defines the probability measure. This is the basis for
theory under the universality of conductance fluctuations
mesoscopic systems@3#. At first sight one is tempted to think
that this universality persists when the potential is such
the support splits into disconnected segments. But it is fo
that, if indeed it is again universal, it belongs to a differe
universality class. If the standard large-N limit ~the random
matrices areN3N) yields the smoothed correlation func
tions up here to an arbitrary constant, different methods
port different results for this constant. Furthermore, there
differences between these correlators when the sizeN of the
matrices is an even or an odd integer. It is a rather intrigu
phenomenon and, for instance, it is not clear how the na
renormalization-group approach@4# which consisted of inte-
grating out one line and one row could deal with such s
ations. We attempt here to understand and to give a un
picture of these results.

The paper is divided as follows. It starts by establish
the notation and conventions and describes completely
method used for the model with a single-cut density of
genvalues. Previously known results are reproduced@1–3#.
Then the method is extended to the model with two cuts
the density of eigenvalues, restricted to symmetric potent
Afterwards we develop the formalism to include asymme
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potentials. Here an arbitrariness remains as the constrain
the filling factor of the two parts of the support is not fixed
leading order in the large-N limit. The large-N equations for
the correlator leave us with an undetermined constantC. Pre-
vious methods using the orthogonal polynomials and lo
equations give different results for this constant. The
thogonal polynomial method is briefly outlined and the r
sulting correlators are sensitive to the even and oddnes
the number of eigenvalues. Further, the constantC is differ-
ent for the even and odd correlators found by the orthogo
polynomial method and that found by the loop equatio
ThusC is identified as a symmetry breaking parameter. T
new generalized technique described here allows exten
the results for the smoothed two-point density-density c
relator to all b51,2, and 4. The conclusion summariz
these new results and attempts to give an explanation
these puzzles.

II. NOTATION, CONVENTIONS

We establish the notations and conventions and devel
method, which we extend to the two-cut model, to der
eigenvalue correlators for random matrix models with
single-cut density of eigenvalues.

Let us work with an ensemble of randomN3N matrices,
with a probability distribution

P~M !5
1

Z
exp„2N Tr V~M !…. ~2.1!

Define the operator for the density of eigenvalues

r~x!5
1

N (
i 51

N

d~x2l i ! ~2.2!

and

r̄~x!5^r~x!&5E P~M !
1

N
Tr d~x2M !@dM#, ~2.3!
3901 ©1999 The American Physical Society
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3902 PRE 59E. BRÉZIN AND N. DEO
in which @dM# is the invariant measure on the three stand
ensembles@5# b51,2,4, respectively, invariant under the o
thogonal, unitary, or symplectic groups. SinceP(M ) gives a
factor exp„2N2*V(x)r(x)dx…, we have

dr̄~x!

dV~y!
52N2^r~x!r~y!&c . ~2.4!

In the large-N limit, we know that

PE
a

br̄~y!

x2y
dy5

1

b
V8~x!. ~2.5!

The solution is found through the averaged resolvent

G~z!5 K 1

N
Tr

1

z2M L 5E
a

br̄~y!

z2y
dy

5
1

b
V8~z!2P~z!A~z2a!~z2b!. ~2.6!

Then

pr̄~l!5P~l!A~l2a!~b2l!. ~2.7!

We then need to expressP as a functional ofV. There are
various equivalent expressions, and in the following seve
will be needed. We follow here@3# and begin by multiplying
Eq. ~2.6! by A(z2a)(z2b)/(z2u) and integrate z over a
large circleC, see Fig. 1.

SinceG(z)'1/z at infinity,

~i! R
c

G~z!A~z2a!~z2b!

z2u

dz

2ip
51, ~2.8!

~ii ! R
c

P~z!@A~z2a!~z2b!#2

z2u

dz

2ip
5P~u!~u2a!~u2b!,

~2.9!

~iii ! R
c

V8~z!A~z2a!~z2b!

z2u

dz

2ip

FIG. 1. The complexz plane with one cut and contour used f
evaluating the two-point density-density correlator for the one-
random matrix model.
d

al

5V8~u!A~u2a!~u2b!

2
1

pEa

b

dx
V8~x!A~x2a!~b2x!

x2u
. ~2.10!

Therefore we obtain from Eq.~2.6!

15
1

b
V8~u!A~u2a!~u2b!

2
1

pbEa

b

dx
V8~x!A~x2a!~b2x!

x2u

1P~u!~u2a!~b2u!. ~2.11!

Let u approach the real axis on the cut. The integral in E
~2.11! has an imaginary part which cancels the first term
the right-hand side, which is pure imaginary. The real par
Eq. ~2.11! gives

P~l!~l2a!~b2l!

511
1

pb
PE

a

b

dx
V8~x!A~x2a!~b2x!

x2l
, ~2.12!

i.e.,

r̄~l!5
1

p

1

A~l2a!~b2l!

3S 11
1

pb
PE

a

b

dx
V8~x!A~x2a!~b2x!

x2l D .

~2.13!

Now we varyV. Let us first ignore the variation ofa andb ~it
is proved to be right below!. Then

dr̄~l!

dV~m!
5S ]r̄~l!

]V~m!
D

a,b

1S ]r̄~l!

]a
D

V,b

da

dV~m!

1S ]r̄~l!

]b
D

V,a

db

dV~m!
~2.14!

on the right-hand side~r.h.s.!. r̄ is being treated as a func
tion of V,a,b as given on the r.h.s. of Eq.~2.13!. We show
later that (]r̄/]a)V,b50. @(]r̄/]a)V,b is of course not the
total derivative ofr̄ with respect toa.] Then

dr̄~l!

dV~m!
5

1

p2b

1

A~l2a!~b2l!

]

]m

A~m2a!~b2m!

l2m
~2.15!

and one verifies easily that the result is symmetric un
exchange ofl andm as it should be. Note that the potenti
V has disappeared from the correlator, except indirec
through the end pointsa andb of the cut. This universality
follows here trivially from the linearity of the (r,V) relation.
The fact that, apart from a normalization, the result is ind
pendent ofb was also expected: indeed in a Feynman gra
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representation, the ensembles differ by the orientability
the surfaces built with the diagrams. The large-N limit is
given by planar diagrams, which are orientable, and it is o
at the level of 1/N corrections that the differences betwe
these ensembles would appear; for the unitary ensemble
instance, the corrections to Eq.~2.15! would vanish at order
1/N, and not for the other values ofb.

Terms of the type

S dr̄

da
D

V,b

da

dV~m!
~2.16!

have been ignored. The claim is that they vanish, but tha
the only ~slightly! tricky part. The representation Eq.~2.13!
is appropriate, among several other possibilities, becaus
one differentiates inside the integral with respect toa, it is
still a meaningful integral. So let us calculate

S ]r̄

] a
D

V,b

52
1

2

1

~l2a!
r̄~l!1

1

2p2b

1

A~l2a!~b2l!

3PE
a

b

V8~x!Ab2x

x2a

1

~x2l!
dx. ~2.17!

To prove that this is zero, let us return to Eq.~2.6! and
multiply it by A(z2b)/(z2a)@1/(z2u)# and integrate again
over a circle of large radius. Then

R
c
G~z!Az2b

z2a

1

z2u
dz5 R

c

dz

z2 50 ~2.18!

as for large z,G(z)51/z,Az2b/z2a'1, and 1/(z2u)
'1/z, while the second and third terms become

2 R
c

P~z!~z2b!

~z2u!

dz

2ip
52P~u!~u2b! ~2.19!

and

1

2 R
c
Az2b

z2a

1

z2u
V8~z!

dz

2ip
5

1

2
Au2b

u2a
V8~u!

2
1

2pEa

bAb2x

x2a

V8~x!

x2u
dx.

~2.20!

Takingu5l1 i e and using 1/a2 i e5P/a1 ipd(a), the in-
tegral in Eq.~2.20! has a part which cancels the first ter
leaving

R
c
Az2b

z2a

1

z2u
V8~z!

dz

2ip
52

1

p
PE

a

bAb2x

x2a

V8~x!

x2u
dx.

~2.21!

Repeating all the steps which led to Eq.~2.15!, i.e., combin-
ing Eq. ~2.18!, Eq. ~2.19!, and Eq.~2.21!, one finds an ex-
pression forr̄ from
f

ly

for

is

if

1

pb
PE

a

bAb2x

x2a

V8~x!

x2l
dx5P~l!~b2l!, ~2.22!

which is

r̄~l!

~l2a!
5

1

p2bA~l2a!~b2l!

3PE
a

bAb2x

x2a

1

~x2l!
V8~x!dx ~2.23!

thus proving that (]r̄/]a)V,b50. This completes the proo
for the single-cut correlator.

III. THE DOUBLE WELL

Now let us extend the result to eigenvalues distributed
two disjoint bands (@2b,2a#ø@a,b#). Let us first restrict
ourselves to even potentials, i.e.,

P~M !5Z21 exp „2N Tr V~M !…, P~2M !5P~M !,
~3.1!

which implies for the resolvent

G~2z!52G~z!. ~3.2!

Since we restrict ourselves to even potentials, we cannot
a functional derivative ofr(l) with respect to an arbitrary
V(m), but we can fold the integrations over the positive p
of the spectrum and then vary the potential. Now

Tr V~M !5NE
2`

1`

dlr~l!V~l!

5NE
0

`

dlV~l!@r~l!1r~2l!#. ~3.3!

Consequently,

2
1

N2

dr̄~l!

dV~m!
5^r~l!r~m!&c1^r~l!r~2m!&c , ~3.4!

where use has been made of

dV8~x!

dV~m!
5d8~x2m!. ~3.5!

In the large-N limit again

G~z!5
1

b
V8~z!2P~z!As~z! ~3.6!

with s(z)[(z22a2)(z22b2). Note that this equation deter
mines uniquelyP(z),a, andb; indeed take

degV52n, →deg@P#52n23;

P(z) has to be odd,

P~z!5a1z1a2z31•••1an21z2n23. ~3.7!
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We thus have (n21)12 unknowns. SinceG(z)'z→`1/z
we have to fix the coefficients of Eq.~3.6! at infinity from
z2n21,z2n23, . . . ,z1,z21→(n11) conditions. Therefore no
‘‘filling’’ parameter creeps into the problem~although the
question of spontaneous symmetry breaking may be el
nated by the assumptions here!.

Now we take Eq.~3.6!, multiply by As(z)/z(z2u), and
integrate over a large circle in thez plane @using
As(z)/z22u2 also has been checked to give the same eq
tion#, see Fig. 2. We obtain

15
V8~u!As~u!

bu
2

2i

2ipbEb

aV8~x!Aus~x!u
x~x2u!

1
2i

2ipbE2a

2bV8~x!Aus~x!u
x~x2u!

2
P~u!s~u!

u
~3.8!

which simplifies to

11
P~u!s~u!

u
5

V8~u!Aus~u!u
bu

2
1

pbEb

aV8~x!Aus~x!u
x

3S 1

~x2u!
1

1

~x1u! D . ~3.9!

We now letu5l1 i e approach the cut, say the one on t
right ~it does not matter!,

11
P~l!s~l!

l
5

V8~l!Aus~l!u
bl

2
1

pbEb

aV8~x!Aus~x!u
x

1

~x1l!

2
1

pbEb

aV8~x!Aus~x!u
x

1

~x2l2 i e!
.

~3.10!

In the last integral use 1/a2 i e5PP/a1 ipd(a) and we
obtain

FIG. 2. The complexz plane with two cuts and contour used fo
evaluating the two-point density-density correlator for the two-
random matrix model.
i-

a-

11
P~l!s~l!

l
52

1

pb
PE

b

aV8~x!Aus~x!u
x

3S 1

~x2l!
1

1

~x1l! Ddx. ~3.11!

Let us take the derivative with respect toV(m)(m is .0 by
definition of V),

s~l!

l

dP~l!

dV~m!
5

1

pb

]

]m

Aus~m!u
m S 1

~m2l!
1

1

~m1l! D
~3.12!

@assuming that we can show here as usual that a counte
of (dr̄/da)V,b@da/dV(m)# and (dr̄/db)V,a@db/dV(m)#
vanishes, see Appendix A for a proof, the exact same s
can be followed here#. Then

r̄~l!5
1

2p
Aus~l!uP~l! ~l.0!, ~3.13!

dr̄~l!

dV~m!
52

1

2pb

Aus~l!u
s~l!

l
]

]m

A~m22b2!~a22m2!

m22l2

52
1

pb

lm

Aus~l!uus~m!u

1

~m22l2!2

3@2l2m22~l21m2!~a21b2!12a2b2#.

~3.14!

Let us check immediately theb50 limit

l

Aus~l!u
→

1

A~a22l2!
~3.15!

and the rest looks unfamiliar; but if we remember that we
computing

r2~l,m!1r2~l,2m! ~3.16!

and

a22lm

~l2m!2 1
a21lm

~l1m!2 522
@2l2m22a2~l21m2!#

~l22m2!2 ,

~3.17!

we check that this result agrees as expected forb50 with the
single-cut result. Therefore for a symmetric double well,
suming no spontaneous symmetry breaking, we have the
disputable answer forr2(l,m)1r2(l,2m), i.e., Eq.~3.14!.
Note that, as expected, the short distance behavior
r2(l,m) is the same as for the single well with only one cu

IV. ASYMMETRIC DOUBLE WELL

In order to extractr2(l,m) alone we have to conside
arbitrary potentials instead of restricting ourselves to ev
(Z2) symmetric potentials as we have done in the abo
section.

Again let us start with

t
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r~l!5
1

N (
i 51

N

d~l2l i ! ~4.1!

with

r̄~l!5^r~l!&. ~4.2!

Since the weight contains

exp~2N Tr V!5expS 2N2E V~l!r~l!dl D , ~4.3!

r2
c~l,m!5^r~l!r~m!&c52

1

N2

dr̄~l!

dV~m!
, ~4.4!

r̄~l!52
1

p
Im G~l1 i0!, ~4.5!

G~z!5 K 1

N
Tr

1

z2M L , ~4.6!

G~z!5
1

b
V8~z!2P~z!As~z!, ~4.7!

s~z!5P i 51
4 ~z2ai !. ~4.8!

See Fig. 3.
The support of the eigenvalues consists of the two s

ments @a1 ,a2# and @a3 ,a4#, ~we assume that they are la
beled by increasing order!; the positivity ofr(l) is satisfied
provided the polynomialP(z) has an odd number of zero
betweena2 anda3 . Contrary to the two previous cases, E
~4.7! is not sufficient to determine fully the polynomialP(z)
and the four end points of the two cuts. Counting parame
and equations one sees readily that we miss one param
which we can take as the filling factor of one of the tw
wells. This factor remains undetermined at this level of
large-N limit, and we would have to return to a minimizatio
of the free energy to fix it. However, since this paramete
not fixed at this leading order, we may ignore it and proce
as before for finding the leading order of the correlator.

We denote

FIG. 3. The complexz plane with asymmetric two cuts an
contour used for evaluating the two-point density-density correla
for the asymmetric two-cut random matrix model.
g-

.

rs
ter,

e

s
d

el511, a3,l,a4 ,

521, a1,l,a2 . ~4.9!

Then

As~l6 i0!56 i elAus~l!u. ~4.10!

Therefore

2pr~l!5elAus~l!uP~l! ~4.11!

and positivity implies that sgnP(l)5el . By multiplication
by As(z)/(z2u)(z2v) integration over a large circle, we
obtain

11
P~u!s~u!2P~v !s~v !

~u2v !

5
1

b

V8~u!As~u!2V8~v !As~v !

u2v

2
1

pbS E
a3

a4
2E

a1

a2D dxV8~x!Aus~x!u
~x2u!~x2v !

. ~4.12!

Let u5l1 i e andv5m1 ih. Then

11
P~l!s~l!2P~m!s~m!

l2m

5
1

pb
PS E

a1

a2
2E

a3

a4D V8~x!Aus~x!u
~x2l!~x2m!

, ~4.13!

R~l,n!5
dP~l!

dV~n!
, ~4.14!

s~l!R~l,n!2s~m!R~m,n!

l2m
5en

1

bp

]

]n

Aus~n!u
~n2l!~n2m!

~4.15!

@assuming once more an equivalent form
(dr̄/dai)(dai /dV) to be zero; see Appendix A#. Hence

s~l!R~l,n!2
en

pb

]

]n

Aus~n!u
n2l

5s~m!R~m,n!

2
en

pb

]

]n

Aus~n!u
n2m

.

~4.16!

From these equations one finds

s~l!R~l,n!2
en

pb

]

]n

Aus~n!u
n2l

5
hen

~n!

Aus~n!u
~4.17!

and we are left with two unknown functionsh1 andh2 of a
single variable. This gives the connected correlator

r2
c~l,m!52

1

2pN2 elAus~l!uR~l,m!, ~4.18!

r
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i.e.,

2pN2r2
c~l,m!5

el

Aus~l!u
H em

pb

]

]m

Aus~m!u

m2l
1

hem
~m!

Aus~m!u
J .

~4.19!

From its definition the two-point correlator is symmetric u
der exchange of the two eigenvalues

r2
c~l,m!5r2

c~m,l!. ~4.20!

This imposes the following constraints:

h1~m!1h2~m!50 ~4.21!

and

bp@h1~m!2h1~l!#5Aus~l!u
]

]l

Aus~l!u
l2m

2Aus~m!u
]

]m

Aus~m!u
m2l

.

~4.22!

A straightforward algebra gives from there the functionh1

up to an arbitrary constant:

h1~l!5
1

pbS l22
1

2
sl1CD ~4.23!

with

s5a11a21a31a4 . ~4.24!

We are thus left with one undetermined constant in the tw
point function:

4p2N2r2
c~l,m!

5
elem

bAus~l!uAus~m!u
S s~l!1s~m!

~l2m!2

1
s8~l!2s8~m!

~l2m!
1l21m22

s

2
~l1m!12CD .

~4.25!

Let us verify that, without any restriction on the constantC,
this result satisfies the normalization condition

E dnr2
c~l,n!50, ~4.26!

which follows from the definition ofr2
c . Returning to Eq.

~4.20!,
-

E dm
]

]m

As~m!

m2l
5E

a1

a2
dm

]

]m

As~m!

m2l

1E
a3

a4
dm

]

]m

As~m!

m2l
50

~4.27!

since s vanishes at the end points.@This point is in fact
slightly delicate, since there is a nonintegrable singularity
m5l. In the literature concerning the application of rando
matrices to the calculation of the fluctuations of the cond
tance in mesoscopic systems@3#, this integration throughou
the singularity is done in a routine way. A proper justific
tion of the procedure implies returning to the true correlat
function, before the smoothing which produces spurio
short-distance singularities through replacements such
(sin2 x/x2→1/2x2). The smoothing is produced here by th
large-N limit.# Next consider

R dz
~z22sz/2!

As~z!
~4.28!

over a large circle. Note thatAs(z)5z2@12s/2z
1O(1/z2)#. Consequently z22sz/2/As(z)511O(1/z2).
Since there is no coefficient of 1/z, the integral vanishes
Shrinking the contour over the cuts, we obtain

S E
a1

a2
2E

a3

a4D dn
n22sn/2

Aus~n!u
50. ~4.29!

Therefore

2pN2S E
a1

a2
dmr2

c1E
a3

a4
dmr2

cD
5

C

pb

el

Aus~l!u
S E

a3

a4 dm

Aus~m!u
2E

a1

a2 dm

Aus~m!u
D . ~4.30!

Again taking a very large circle

R dz

As~z!
50 ~4.31!

since the coefficient of 1/z vanishes. Therefore, shrinking th
circle,

E
a3

a4 dm

Aus~m!u
5E

a1

a2 dm

Aus~m!u
~4.32!

which shows that the normalization is correct for any va
of C.

Let us specialize to the symmetric double well (a15
2b, a252a, a35a, anda45b)

us~l!u5~l22a2!~b22l2!. ~4.33!

After a few lines
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2p2r2
c~l,m!5

elem

bAus~l!uus~m!u

1

~m2l!2

3@C~m2l!21lm~lm2a22b2!1a2b2#.

~4.34!

We want now to make several remarks.~i! The result is
manifestly symmetric underl↔n. ~ii ! C remains an un-
known function ofa andb. ~iii ! If we assume thatC vanishes
whenb50, then since

lim
a→0

Aus~l!u5ell~a22l2! ~4.35!

we recover the single-band result.~iv! The cross-correlato
rc

2(l,2n) is simply Eq. ~4.34! with n replaced by2n.
Combining Eq.~4.34! with rc

2(l,2n) we reproduce the re
sult Eq. ~3.14! in Sec. III. ~v! We also note that forC5
2 1

2 $(a21b2)2(a1b)2@E(k)/K(k)#% we recover the con-
nected density-density correlator derived from the connec
Green’s function@whereE(k) andK(k) are complete elliptic
integrals of first and second kind andk52Aab/(a1b)] in
Eq. ~15! of Ref. @6#. ~vi! The result for the two-point density
density correlator has been generalized to allb51,2,4 with
the end pointsa1 ,a2 ,a3 ,a4 ,a,b all functions of beta and the
parameters contained in the potentialV(x). Note that this is
a nontrivial generalization as other methods, for example
orthogonal polynomial method, do not extend tob51,4 eas-
ily as they involve skew orthogonal polynomials.

V. ORTHOGONAL POLYNOMIALS, THE KERNEL,
ODD AND EVEN N

This section follows the notation of Ref.@7#. Let us cal-
culate the kernelKN(m,n) for N even andN odd,

KN~m,n!5ARN

N S cN~m!cN21~n!2cN21~m!cN~n!

~m2n! D .

~5.1!
d

e

The asymptotic ansatz forcn(l) for N→` but N2n finite
is

cn~l!5
1

Af ~l!
Fcos@Nz2~N2n!f1x

1~21!nh#~l!1OS 1

ND G ,
f ~l!5

p

2lS b22a2

2 D sin 2f~l!,

z8~l!52pr~l!,
~5.2!

cos 2f~l!5
l22~a21b2!/2

~b22a2!/2
,

cos 2h~l!5
b cosf~l!

l
,

sin 2h~l!5
a sinf~l!

l
.

Substituting

cN~l!5
1

Af ~l!
$cos@Nz2~N2N!f1x1~21!Nh#~l!%,

~5.3!

cN21~l!5
1

Af ~l!
$cos@Nz2~N2N11!f1x1

3~21!~N21!h#~l!%, ~5.4!

we get
KN~m,n!5
ARN

N~m2n!Af ~m! f ~n!
cosNh~m!cosNh~n!@cosf~n!cos 2h~n!2~21!Nsinf~n!sin 2h~n!

2cosf~m!cos 2h~m!1~21!Nsinf~m!sin 2h~m!#1sinNh~n!cosNh~m!@sinf~n!cos 2h~n!

1~21!Nsin 2h~n!cosf~n!#2sinNh~m!cosNh~n!@sinf~m!cos 2h~m!1~21!Nsin 2h~m!cosf~m!#, ~5.5!

where

Nh~m!5@Nz1x1~21!Nh#~m!. ~5.6!

On simplifying further
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KN~m,n!5
ARN

2N~m2n!Af ~m! f ~n!
F $cos@Nh~m!1Nh~n!#1cos@Nh~m!2Nh~n!#%

3S b

n
cos2 f~n!2~21!N

a

n
sin2 f~n!2

b

m
cos2 f~m!1~21!N

a

m
sin2f~m!D

1$sin@Nh~n!1Nh~m!#1sin@Nh~n!2Nh~m!#%S b

n
1~21!N

a

n
D sinf~n!cosf~n!

2$sin@Nh~m!1Nh~n!#1sin@Nh~m!2Nh~n!#%S b

m
1~21!N

a

m
D sinf~m!cosf~m!G . ~5.7!

Squaring and averaging, we get after some tedious algebra

^KN
2 ~m,n!&5

RN

4N2~m2n!2f ~m! f ~n!2nm~b22a2!2/4 S 2nm
~b22a2!2

2
2n2m2@2ab~21!N1a21b2#

1
~a21b2!

2
~n21m2!@2ab~21!N1a21b2#22ab~21!Na2b22~a21b2!

~b41a4!

2

2~n21m2!
~b22a2!2

2
1

2

4
~b22a2!2~a21b2! D . ~5.8!
he

er
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th
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ro-
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ty-
he
n-
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en-
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l
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up-
ality
Simplifying for N even,

^KN~m,n!2&5
RN~a1b!2

4N2~m2n!2f ~m! f ~n!nm
~b22a2!

2

3@nm~b21a2!2n2m22a2b21~n2m!2ab#

~5.9!

while for N odd,

^KN~m,n!2&5
RN~a2b!2

4N2~m2n!2f ~m! f ~n!nm
~b22a2!

2

3@nm~b21a2!2n2m22a2b2

2~n2m!2ab#. ~5.10!

Note that RNeven
(a1b)25A(a1b)25@(a2b)2/4#(a1b)2

5(a22b2)2/4 and RNodd
(a2b)25B(a2b)25(a2

2b2)2/4). Comparing this expression with that found by t
previous method of Sec. IV, we find thatC5(21)Nab.
Thus C is identified as a symmetry breaking paramet
which is a new concept missing from earlier treatments
this model. The standard large-N limit techniques of analyz-
ing matrix models like the loop equation method Refs.@1,6#
and renormalization group Ref.@4# assume a smooth beha
ior with respect toN at largeN. The result thatC differs for
odd or evenN by terms of order 1 suggests that these me
ods may need to be revisited in the context of random ma
models with eigenvalue distributions with gaps.
,
f

-
ix

VI. CONCLUSION

To conclude, we have outlined a method which rep
duces known results for the single-cut model and extende
to the two-cut random matrix model. The two-point densi
density correlator contains a derivative part familiar from t
single-cut model but in addition contains a nontrivial no
derivative piece. It is further seen that different methods g
different values for the two-point correlator. The orthogon
polynomial method is briefly outlined and gives differe
values for the nonderivative piece for even and odd eig
values. The loop equation method gives a different res
The difference in the results is in the nonderivative part
the two-point density-density correlator. The method o
lined unifies these differences in an arbitrary constantC
~which cannot be fixed by the chemical potential constra
and is the symmetry breaking parameter! which takes differ-
ent values. Different values ofC found from the orthogona
polynomial and loop equation methods are identified.

This raises several questions regarding the analysis of
model. One possibility is that the even-odd differences m
require some care in handling the largeN techniques of ran-
dom matrix models, e.g., loop equations and renormaliza
group. Another question relates to spontaneous breakin
theZ2 symmetry in the largeN limit. In this context, for the
Z2 symmetric random matrix models with two wells, an i
finite family of solutions, which break theZ2 symmetry and
have the same free energy as theZ2 symmetric solution but
different connected correlators, has been identified in R
@8#. It would be interesting to compare whether the differe
solutions noted here~corresponding to different values ofC)
correspond to some of the multiple solutions~spontaneous
symmetry breaking solutions! of Ref. @8#. Finally let us note
that when the number of connected components for the s
port of the eigenvalues changes, one finds a new univers
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class for the correlators. It is thus not completely obvio
that it is legitimate to use the simple one-cut function in t
application to mesoscopic fluctuations. These new results
the double-well random matrix model which incorpora
spontaneous symmetry breaking effects are found for ab
51,2, and 4. It seems interesting to us that this simple s
tem, namelyN charges confined by a symmetric doublew
with a logarithmic repulsion between the charges, exhib
such rich behavior.

Note added. In Ref. @7# among other things the even pa
of the two-point correlator Eq.~5.9! has been found. After
this work was completed we became aware of Ref.@9#, in
which the odd part of the two-point correlator is also fou
by a method due to Shohat.
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APPENDIX A

Equation~4.15! was derived under the assumption tha
counterpart of (dr̄/dai)V,bi

50. Here we prove this result fo
the asymmetric double well.@Following a similar procedure
s

or

s-
l
s

e
d
f
e-
re
.
,
nt

we can show that an equivalent form of (dr̄/dai)V,bi
50,

from which Eq. ~3.12! follows for the symmetric double
well.# From Eq.~4.15! it is easy to see that we have to prov
the following equation equivalent to (dr̄/dai)V,bi

50 in the
single-well problem:

S 22pr̄~l!el

dAus~l!u
da

12pr̄~m!em

dAus~m!u
da D

~l2m!
~A1!

5
1

pbEa

b
V8~x!

dAus~x!u
da

~x2l!~x2m!
2

1

pbEc

d
V8~x!

dAus~x!u
da

~x2l!~x2m!
.

~A2!

Let us take

2G~z!5
V8~z!

b
2P~z!A~z2a!~z2b!~z2c!~z2d!.

~A3!

Multiply by @1/(z2u)(z2v)#@As(z)/(z2a)# and integrate
over a large circle. The first term

2 R
c

G~z!

~z2u!~z2v !

As~z!

~z2a!

dz

2p i
5 R

c

1

z2 dz50 ~A4!

as for largez G(z)'1/z,As(z)'z2,1/(z2u)(z2v)'1/z2,
and 1/z2a'1/z. The third term becomes
R
c

P~z!s~z!

~z2u!~z2v !~z2a!

dz

2p i
5

P~u!~u2b!~u2c!~u2d!2P~v !~v2b!~v2c!~v2d!

~u2v !
~A5!
q.
while the second term is

R
c

V8~z!

~z2u!~z2v !

As~z!

~z2a!

dz

2p i

5
As~u!V8~u!

~u2a!~u2v !
1

As~v !V8~v !

~v2a!~v2u!

1
1

p i Ea

b V8~x!

~x2u!~x2v !

As~x!

~x2a!

1
1

p i Ec

d V8~x!

~x2u!~x2v !

As~x!

~x2a!
. ~A6!

On usingu5l1 i e and v5m1 i e with l,m on the right-
hand cut, 1/x2l2 i e5(P/x2l)1 ipd(x2l) and As(x)
5 i eluAs(x)u, the second integral simplifies to

R
c

V8~z!

~z2u!~z2v !

As~x!

~z2a!

dz

2p i

5
1

pEa

b V8~x!uAs~x!udx

~x2l!~x2m!~x2a!

2
1

pEc

d V8~x!uAs~x!udx

~x2l!~x2m!~x2a!
. ~A7!

Combining these three terms and simplifying we get E
~A2!, which is what is needed in order to get Eq.~4.15!.
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