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Correlations and symmetry breaking in gapped matrix models
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Some puzzles which arise in matrix models with multiple cuts are presented. They are present in the
smoothed eigenvalue correlators of these models. First a method is described to calculate smoothed eigenvalue
correlators in random matrix models with eigenvalues distributed in a single cut. Previous known results are
reproduced. The method is extended to symmetric two-cut random matrix models. The correlators are written
in a form suitable for application to mesoscopic systems. Connections are made with the smooth correlators
derived using the orthogonal polynomial method. A few interesting observations are made regarding even and
odd density-density correlators and crossover correlataZs symmetric random matrix models. A symmetry
breaking parameteC is identified in the smooth correlators for @1, 2, and 4/S1063-651%99)02504-0

PACS numbsgs): 05.40—a, 02.50-r

I. INTRODUCTION potentials. Here an arbitrariness remains as the constraint on
the filling factor of the two parts of the support is not fixed at

Matrix models have been used in a wide variety of appli-leading order in the largsklimit. The largeN equations for
cations, starting from quantum chaotic systems to condensgbe correlator leave us with an undetermined constaiftre-
matter, quantum chromodynamics, and string theory. The revious methods using the orthogonal polynomials and loop
cent period has seen a large increase in our understanding efuations give different results for this constant. The or-
the properties of these models. In this work we have beethogonal polynomial method is briefly outlined and the re-
interested in highlighting some unusual properties of two-cusulting correlators are sensitive to the even and oddness of
random matrix models that have arisen in our study. Théhe number of eigenvalues. Further, the cons@i differ-
results are unexpected as they are not seen in matrix mode##t for the even and odd correlators found by the orthogonal
when the density of eigenvalues has a connected suppogolynomial method and that found by the loop equations.
Indeed there it is well knowfil,2] that the correlator is uni- ThusC is identified as a symmetry breaking parameter. The
versal, i.e., independent of the specific potenifalvhich  new generalized technique described here allows extending
defines the probability measure. This is the basis for théhe results for the smoothed two-point density-density cor-
theory under the universality of conductance fluctuations irrelator to all 3=1,2, and 4. The conclusion summarizes
mesoscopic systeni8]. At first sight one is tempted to think these new results and attempts to give an explanation of
that this universality persists when the potential is such thathese puzzles.
the support splits into disconnected segments. But it is found
the_lt, if indeed it is again universal, it bglo_ngs to a different IIl. NOTATION, CONVENTIONS
universality class. If the standard larbelimit (the random
matrices areNXN) vyields the smoothed correlation func-  We establish the notations and conventions and develop a
tions up here to an arbitrary constant, different methods remethod, which we extend to the two-cut model, to derive
port different results for this constant. Furthermore, there areigenvalue correlators for random matrix models with a
differences between these correlators when theinéthe  single-cut density of eigenvalues.
matrices is an even or an odd integer. It is a rather intriguing Let us work with an ensemble of randdix N matrices,
phenomenon and, for instance, it is not clear how the naivavith a probability distribution
renormalization-group approa¢h] which consisted of inte-
grating out one line and one row could deal with such situ- 1
ations. We attempt here to understand and to give a unified P(M)=Zexp(—=NTrv(Mm)). 23
picture of these results.

The paper is divided as follows. It starts by establishing
the notation and conventions and describes completely th
method used for the model with a single-cut density of ei- N
genvalues. Previously known results are reprodudeB]. 1
Then the method is extended to the model with two cuts in p(X)= NZ& S(X=Aj) 2.2
the density of eigenvalues, restricted to symmetric potentials.

Afterwards we develop the formalism to include asymmetrican d

Refine the operator for the density of eigenvalues
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FIG. 1. The complex plane with one cut and contour used for
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=V'(u)y(u—a)(u—h)
V' (x)V(x—a)(b—x)
X—u '

1 (b
- ;L dx (2.10
Therefore we obtain from Eq2.6)
1= %V’(u)\/(u—a)(u—b)
b V' (x)V(x—a)(b—x)
77,8 dx X—u
+P(u)(u—a)(b—u). (2.11

evaluating the two-point density-density correlator for the one-cut

random matrix model.

Let u approach the real axis on the cut. The integral in Eq.
(2.11 has an imaginary part which cancels the first term of

in which[dM] is the invariant measure on the three standardhe right-hand side, which is pure imaginary. The real part of
ensemble$5] B8=1,2,4, respectively, invariant under the or- Eq. (2.11) gives

thogonal, unitary, or symplectic groups. SirfeeéM) gives a

factor exg{— N2/ V(x)p(x)dx), we have

5;(x)

iy~ NAPOP)e. (2.4

In the largeN limit, we know that

bF(y) 1.

The solution is found through the averaged resolvent

1 1 bp(
G(Z):<NTrz—M> - L ’Z’(_y;dy

=%V (z)—P(2)y(z—a)(z—b). (2.6
Then
mp(\)=P(\)J(A—a)(b—N\). 2.7

We then need to expressas a functional olV. There are

P(M)(A—a)(b—))

L —pf Y 0\ (x=a)(b=x)

X—A ’

(2.12

3l

p(N)=

1
V(A—a)(b—N\)
1+Wiﬁpfbdl\v (x)J(x—a)(b—x )

X—A\

(2.13

Now we varyV. Let us first ignore the variation afandb (it
is proved to be right below Then

550\): ap(\) ap(\) sa
oV(u) \oV(w)/ ga |, 6V(u)
ap(\) Sb
+( 7o )V,aévw 219

various equivalent expressions, and in the following severabn the right-hand sidér.h.s). ;is being treated as a func-

will be needed. We follow herf8] and begin by multiplying

tion of V,a,b as given on the r.h.s. of ER.13. We show

Eq. (2.6) by V(z—a)(z—b)/(z—u) and integrate z over a |ater that @p/&a)v »=0.[(dpl3a)y , is of course not the

large circleC, see Fig. 1.
SinceG(z)= 1/z at infinity,

i) éG(z\/z a)(z—b) dz

PP =1, (2.8

2
()fﬁp(z)[“ (2Z)EZDIF 92 _ o - ayu-b),

(2.9

2im

|||)§V(Z\/Z a)(z—b) dz

2im

total derivative Ofp with respect taa.] Then

p(V) _ 1 1L 0 Nw-ab-p
N(n) 7B J(n—a)(b—\) Im A—p
(2.19

and one verifies easily that the result is symmetric under
exchange ofh andu as it should be. Note that the potential
V has disappeared from the correlator, except indirectly
through the end pointa andb of the cut. This universality
follows here trivially from the linearity of theg, V) relation.
The fact that, apart from a normalization, the result is inde-
pendent of3 was also expected: indeed in a Feynman graph
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representation, the ensembles differ by the orientability of 1 b—xV'(x)
W_ﬂ J —a dx=P(N)(b—\), (2.22

the surfaces built with the diagrams. The laigdimit is

. . . . - X—N\
given by planar diagrams, which are orientable, and it is only
at the level of 1IN corrections that the differences between

which is

these ensembles would appear; for the unitary ensemble for
instance, the corrections to E@.15 would vanish at order ;()\) 1
1/N, and not for the other values ¢f.

Terms of the type (7\—3) m?BV(A—a)(b—\)

(5” o8 2.1 xpf Vo viax @23
sal,,, oV(w) (219 x—a(x—\) '

have been ignored. The claim is that they vanish, but that igus proving that {p/Ja)y, ,=0. This completes the proof
the only (slightly) tricky part. The representation E(R.13  for the single-cut correlator.

is appropriate, among several other possibilities, because if

one differentiates inside the integral with respecttat is Ill. THE DOUBLE WELL

still a meaningful integral. So let us calculate

Now let us extend the result to eigenvalues distributed in
(a;) 11 1 1 two disjoint bands [(—b,—a]uU[a,b]). Let us first restrict
a V,b

PN+ =— ourselves to even potentials, i.e.,
2B J(\—a)(b—\)
P(M)=Z"texp (=NTrvV(M)), P(=M)=P(M),

“20-a)f
b—x 1 (3.9
J V'(X) (2.17)

T

x=a(x- )\) which implies for the resolvent
To prove that this is zero, let us return to EQ.6) and G(—2)=—-G(2). (3.2
multiply it by \(z—b)/(z—a)[ 1/(z—u)] and integrate again
over a circle of large radius. Then Since we restrict ourselves to even potentials, we cannot take
a functional derivative op(\) with respect to an arbitrary
V(u), but we can fold the integrations over the positive part
iG(Z) ““ar—ud 3g—= (2.18  of the spectrum and then vary the potential. Now
+ oo
as for large z,G(z)=1/z,\z—b/lz—a~1, and 1/¢—u) TfV(M):Nf dAp(MV(N)
~1/z, while the second and third terms become o
fﬁ P(z)(z—b) dz b b 01 =Nf0 dAAV(M)[p(N) +p(—N)]. 3.3
z=w 2z PWu=b (219
Consequently,
and
1 5p(\)
1 fu-b TN avi) PPt (p(Mp(=p))e, (34
2§ z—az—u ()2|77 2 V(u)

where use has been made of

/b xV' (x)
X. SV'(X)
X—a X— u =8 (x—p). (3.9

SV(p)
(2.20

Takingu=A+ie and using ld—ie=P/a+iw(a), the in-

In the largeN limit again

tegral in Eq.(2.20 has a part which cancels the first term 1
Iegving | P G(2)= EV (2)=P(2)Vo(2) (3.6
1 (b [b—xV'(x) with o(2)=(z°—a?)(z?—b?). Note that this equation deter-
fﬁ P— (Z)ZMT: - ;PL —ax—u dx mines uniquelyP(z),a, andb; indeed take
(221 degvV=2n, —deg[P]=2n-3;

Repeating all the steps which led to Eg.15), i.e., combin- P(2) has to be odd
ing Eqg. (2.18, Eg. (2.19, and Eq.(2.21), one finds an ex- '

pression forp from P(2)=a z+ a2+ -+ ay_ 22" 5 3.7
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LPOO) 1 eV (0o

A B B b X

dx. (3.1)

C 1
X((x—)\) BTSN

Let us take the derivative with respect¥gu)(u is >0 by
definition of V),

o(A) P(N) 1 d Ve[ 1 N 1
N NV wBm  pm \(w=N) (wtN)
(3.12

FIG. 2. The complex plane with two cuts and contour used for [assuming that we can show here as usual that a counterpart

evaluating the two-point density-density correlator for the two-cutgf (5p/ sa)y o[ al8V(u)] and (6p/ 8b)y o[ 5b/ V()]
random matrix model. vanishes, see Appendix A for a proof, the exact same steps

can be followed here Then
We thus have rf—1)+2 unknowns. Sinces(2)~,_.1/z

we have to fix the coefficients of E@3.6) at infinity from

— 1
2" 2203 . 724,z '—(n+1) conditions. Therefore no p(N)= E”‘T()\NP(A) (A>0), (3.13

“filling” parameter creeps into the problenalthough the

guestion of spontaneous symmetry breaking may be elimi- 5;()\) 1 \/0(—)\ 0 (@Z=0%)(a= 12
nated by the assumptions hgre

= uZ—\2
Now we take Eq(3.6), multiply by Jo(2)/z(z—u), and N 2mp o) "o A
integrate over a large circle in the plane [using 1 A 1
Jo(z)/z%— u? also has been checked to give the same equa- =- B 2=\
tion], see Fig. 2. We obtain B Nle(M)|[o(w)] (#
X[2N2u2— (N2+ u?)(a%+Db?)+2a%b?].
V (W) yo(u) J'aV (X)V]|o(x)] (3.14
Bu 2|7-r,8 X(X—u)
Let us check immediately thie=0 limit
2i [~V ()V[o()]  P(u)o(u)
2img8 X(x—u) u 3.8 A 1
@ (3.15

Jool J@@—r3)

which simplifies to N .
and the rest looks unfamiliar; but if we remember that we are

computin
1+mwdm:vwwﬂdmt_gijmwdml PUing
u Bu B p2(N, )+ pa(N,— ) (3.16
x( 1 N 1 3.9 and
X—u X+u))’ '
(x—u) - (x+w —Ap @t iu [2M\2u2—a%(N%+ u?)]
Y 2= 2_ . 2\2 )
We now letu= X\ +ie approach the cut, say the one on the (A=p)” " (At p) (A ) (3.17
right (it does not matter )
we check that this result agrees as expecteth fo with the
PN)o(h) V(M) V|a(MV)| single-cut result. Therefore for a symmetric double well, as-
1+ N = BN suming no spontaneous symmetry breaking, we have the un-
disputable answer fgs,(\,u) + po(N,— w), i.e., Eq.(3.14.
1 rav'(x)ylo(x)| 1 Note that, as expected, the short distance behavior of
- W_ﬂf (X+N) p2(\,u) is the same as for the single well with only one cut.
1 JaVI(X) VIa(x)] 1 IV. ASYMMETRIC DOUBLE WELL
7B (X—\—ie€)

In order to extractp,(\,u) alone we have to consider
(3.10 arbitrary potentials instead of restricting ourselves to even
(Z,) symmetric potentials as we have done in the above
In the last integral use &-ie=PP/a+iwd(a) and we section.
obtain Again let us start with
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€\~ +1, a3<7\<a4,

=—1, ay<A<ay. 4.9
¢ Then
Jo(h£i0)=£igo(N)]. (4.10
Therefore

2mp(\) = e V[o(M)[P(N) (4.1

and positivity implies that sgh(\) =€, . By multiplication
by Vo(z)/(z—u)(z—v) integration over a large circle, we

FIG. 3. The complexz plane with asymmetric two cuts and

contour used for evaluating the two-point density-density correlatorObtaln
for the asymmetric two-cut random matrix model. P(u)a(u)—P(v)o(v)
J’_
1 N ! (u=v)
N)== O(N—N\)) 4.1
(V) NZ ( @9 1V'(u) \/o(u —V’(v)\/cr(v
with B -
_ J' faz dxV' (x) V| a(x)] 41
p)=(p(\)). (4.2 w0 412
Since the weight contains Letu=\+ie andv=pu+izn. Then
exp(—NTrV)=exp(—N2f V()\)p()\)d)x), @43 1+ P(M‘T("i_P(“)“(“)
-
1 Sp(\) U FM V' (x)V]o(X)]
SN, ) ={(p(\ ==, 4.4 4.1
PO =P~ 7 Sy N ) (413
_ 1 _ ROA )= OP(N) 414
p()\)——;ImG()\HO), (4.5 (Nv =N’ .
1 gMRN v —o(wRpv) 1 9 Ne()|
C@=\NT"=m 49 N—u “Bm av (v—N)(v—p)
(4.19
1 . .
G(2)==V'(2)-P(2) \/ﬁ, (4.7) [azsumlng once more an equwglent form  of
B (8pl 8a;)(6a;/8V) to be zero; see Appendix]AHence
O'(Z):Hitl(z_ai)- (4.8 €, 9 V|o(v)]
a(MR(N, v 7B v ﬁ:U(M)R(M,V)
See Fig. 3.

The support of the eigenvalues consists of the two seg- e, 9 \Jo(v)|
ments[a;,a,] and[a;,a,], (we assume that they are la- -z )
beled by increasing ordgrthe positivity ofp(\) is satisfied TB v v—p
provided the polynomiaP(z) has an odd number of zeros (4.16
betweena, andas. Contrary to the two previous cases, Ed. from these equations one finds
(4.7) is not sufficient to determine fully the polynomiBlz)
and the four end points of the two cuts. Counting parameters T h
and equations one sees readily that we miss one parameter, (MR, v)— hid i o(v = () (4.17
which we can take as the filling factor of one of the two ' mB Iv v—A lo(v)]

wells. This factor remains undetermined at this level of the
largeN limit, and we would have to return to a minimization and we are left with two unknown functiors, andh_ of a
of the free energy to fix it. However, since this parameter issingle variable. This gives the connected correlator
not fixed at this leading order, we may ignore it and proceed
as before for finding the leading order of the correlator.

We denote

1
psnm=— 5 peloIROLL), (418
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27N2p5(\, p) =

€, €, 9 Vlo(w)] heﬂ(ﬂ“)]
—_ + :
Vle)IL 7B I w=h o(p)]

(4.19

From its definition the two-point correlator is symmetric un-

der exchange of the two eigenvalues

pS(N, )= p5(1,N). (4.20
This imposes the following constraints:
h(u)+h_(n)=0 (4.21)
and
5 ool
Brlhi(w)=h ()]=V][e\)|=—— .
— 9 N|o(u)
(4.22

A straightforward algebra gives from there the function
up to an arbitrary constant:

e c 4.2
h,(\)=— B A —ES)H— 4.23

with
s=aj;+a,tazta,. (4.29

We are thus left with one undetermined constant in the two-

point function:

A47*N2pS(\, 1)

B €€y /O’()\)-f—a'(M)
slo Vo] (A—w)?

S
A2+ uP—=(N+u)+2C]|.
(A—n) 2

(4.25

Let us verify that, without any restriction on the constéent
this result satisfies the normalization condition

f dvps(\,v)=0, (4.26

which follows from the definition ofp5.

(4.20,

Returning to Eq.
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Jd Jd No azd d No(w)
o p- >\ a Hou u—x
+F4d d No(p)
ag How u—x
(4.27)

since o vanishes at the end pointgThis point is in fact
slightly delicate, since there is a nonintegrable singularity at
p©=NX\. In the literature concerning the application of random
matrices to the calculation of the fluctuations of the conduc-
tance in mesoscopic systelf8, this integration throughout
the singularity is done in a routine way. A proper justifica-
tion of the procedure implies returning to the true correlation
function, before the smoothing which produces spurious
short-distance singularities through replacements such as
(sir? xIx*—1/2x?). The smoothing is produced here by the
largeN limit.] Next consider

2_
é OIZ(z s22)

(4.28
Vo (2)

over a large circle. Note that\o(z)=2z41-s/2z
+0(1/z%)]. Consequently z22—sz2/\Jo(z)=1+0(1/2?).

Since there is no coefficient of Z/the integral vanishes.
Shrinking the contour over the cuts, we obtain

1% _SV/2
o[22z
O'(V
Therefore
277N2( fazdup§+ fa4d//«p§)
as dl(L )
= f . (4.30
8 Ve[V Y e V]o(w)| Yo V]o(w)|
Again taking a very large circle
dz B 431
Jo(z) '

since the coefficient of Z/ivanishes. Therefore, shrinking the
circle,

a; du a2 du
| - (4.32
as Vo) Jar]o(p)l
which shows that the normalization is correct for any value
of C.

Let us specialize to the symmetric double we#; €
—b, a,=—a, az=a, anda,=b)

(M) =(\2=a?) (b2~ \?). 4.33

After a few lines
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X 1 The asymptotic ansatz faf,(\) for N—oo but N—n finite

272p§(N, )= 5 is

Ble(N)|a(w)] (#=M)

2 2 2 2K2
X[C(—N)2+ A (A uw—a2—b?)+a2b?]. wn()\):; cogNZ— (N=n) b+ x
(4.34) VEOOL
We want now to make several remarkg. The result is _13\n i
) . . ; +(—=1)"5](M)+0O ”
manifestly symmetric undek« v. (ii) C remains an un- N
known function ofa andb. (iii) If we assume that vanishes
whenb=0, then since ) a (bz—az) in26(0)
= sin ,
lim \[o (V)] = e\ (22— \2) (4.3 2h 2
a—0
_ _ ') =—mp(\),
we recover the single-band resuliv) The cross-correlator (5.2)
p2(\,—v) is simply Eq.(4.34 with v replaced by—». 2= (224 b?)/2
Combining Eq.(4.34 with p2(\,—v) we reproduce the re- COS 2p(N\) = “—adn
sult Eq. (3.19 in Sec. lll. (v) We also note that foC= ( a’)
—3{(a®+b?) —(a+b)?E(k)/K(k)]} we recover the con-
nected density-density correlator derived from the connected cos 29(\) = b cosp(r)
Green'’s functiojwhereE (k) andK (k) are complete elliptic A '
integrals of first and second kind atd=2./ab/(a+b)] in
Eq. (15) of Ref.[6]. (vi) The result for the two-point density- _ asing(\)
density correlator has been generalized toga#1,2,4 with sin2n(\) = -
the end point®, ,a,,a3,a4,a,b all functions of beta and the
parameters contained in the potentiglk). Note that this is s o
- R ubstituting

a nontrivial generalization as other methods, for example thé
orthogonal polynomial method, do not extendde 1,4 eas- L
ily as they involve skew orthogonal polynomials. In(N) = — {COS[NZ— (N—N) &+ x+(—1)Np] OV},

V. ORTHOGONAL POLYNOMIALS, THE KERNEL, (5.3
ODD AND EVEN N

This section follows the notation of R€f7]. Let us cal- 1 N
culate the kerneK (., ») for N even andN odd, In-2(M) = W{COS{'\M (N=N+1)p+x+
Koy ,v) = /ﬁ( In(p) - 1(v) = -1 (p) () X (—1)N"Vypin)}, (5.9
NUAL N (—v) .
(5.) we get

i VRy
M, v)=
T N f ()
—c0s¢()cos 2n( )+ (— 1)Nsin(w)sin 29( )]+ sinNh( v)cosNh( u)[ sing( v)cos 25( v)

+(—1)Nsin 29(v)cose(v)]—sinNh(u)cosNh(v)[sing(w)cos 2p(w)+ (—1)Nsin 2p(m)cosd(u)], (5.5

cosNh(u)cosNh(v)[cose(v)cos 2p(v)—(—1)Nsing(v)sin 25(v)

where

Nh(u)=[NZ+x+(=DNyp](w). (5.6)

On simplifying further
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i VRy
w,v)=
§ 2N(— )V F ()

b a b a
X | = coS ¢(v)—(—1)N=sir? ¢(v)— —cos ¢(u)+(—1)N— sirt¢(u)
v v % %

{cos[Nh(u)+Nh(v)]+cos[Nh(x)—Nh(»)]}

b a
+{sin[Nh(»)+Nh(u)]+siMNh(») =Nh(u) ]} —+ (= 1)N—|sin¢(v)cosd(v)
14 14
- . b N a .
—{sinNh(x)+Nh(v)]+siNh(x) =Nh(»)]}{ —+(=1)"—|sing(u)cosp(u) |. (5.7)
o “
Squaring and averaging, we get after some tedious algebra
R (bZ_aZ)Z
2 _ N _ 2.2 _ 1\ 4210 R2
<KN(/U“1V)>_ 4N2(,LL—V)2f(,(,L)f(V)2V/.L(b2_a2)2/4 2V,LL 2 vV u [Zab( 1) +a +b ]
a’+b? b*+a*
@ 3 )(V2+,u2)[2ab(—1)N+a2+bz]—2ab(—l)Na2b2—(a2+b2)—( 3 )
(b2_a2)2 2
— (V2 + u?) > +Z(b2—a2)2(a2+b2) . (5.9
|
Simplifying for N even, VI. CONCLUSION
) To conclude, we have outlined a method which repro-
K NE Rn(a+b) duces known results for the single-cut model and extended it
(Kn(p, )%= ) ) b°—a?) to the two-cut random matrix model. The two-point density-
AN(p=) (W)t (V)vp—DF— density correlator contains a derivative part familiar from the

single-cut model but in addition contains a nontrivial non-
X[vu(b?+a?) —v’u’—a’b’+(v—pu)?ab]  derivative piece. It is further seen that different methods give
(5.9 different values for the two-point correlator. The orthogonal
' polynomial method is briefly outlined and gives different
values for the nonderivative piece for even and odd eigen-
while for N odd, values. The loop equation method gives a different resuilt.
The difference in the results is in the nonderivative part of
Ry(a—b)? the two-point density-density correlator. The method out-
b2=a?) Iine(_j unifies thesg differences in an arbitrary constﬁnt.
AN (pu— )2 () f(v) v —— (which cannot be fixed by the chemical potential constraint
2 and is the symmetry breaking paramgtehich takes differ-
ent values. Different values @& found from the orthogonal
polynomial and loop equation methods are identified.
—(v—u)?abl. (5.10 This raises several questions regarding the analysis of this
model. One possibility is that the even-odd differences may
require some care in handling the lafgeechniques of ran-
Note that RNeven(a+ b)?=A(a+b)’=[(a~b)*4](a+b)? dom matrix models, e.g., loop equations and renormalization
=(a®-b%?/4 and Ry (a—b)’=B(a—b)*=(a®  group. Another question relates to spontaneous breaking of
—b?)?/4). Comparing this expression with that found by thethe Z, symmetry in the largd\ limit. In this context, for the
previous method of Sec. IV, we find th&=(—1)Nab. Z, symmetric random matrix models with two wells, an in-
Thus C is identified as a symmetry breaking parameter finite family of solutions, which break th&, symmetry and
which is a new concept missing from earlier treatments ohave the same free energy as #yesymmetric solution but
this model. The standard largédimit techniques of analyz- different connected correlators, has been identified in Ref.
ing matrix models like the loop equation method Ré¢fs6]  [8]. It would be interesting to compare whether the different
and renormalization group Rd#] assume a smooth behav- solutions noted her&orresponding to different values 6
ior with respect taN at largeN. The result thaC differs for  correspond to some of the multiple solutiofspontaneous
odd or everN by terms of order 1 suggests that these methsymmetry breaking solution®f Ref.[8]. Finally let us note
ods may need to be revisited in the context of random matrixhat when the number of connected components for the sup-
models with eigenvalue distributions with gaps. port of the eigenvalues changes, one finds a new universality

<KN(1U“!V)2>=

X[vu(b?+a?)— v2u?—a%b?
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class for the correlators. It is thus not completely obviousye can show that an equivalent form 05R/5ai)v,bi=0|

that it is legitimate to use the simple one-cut function in thefrom which Eq. (3.12 follows for the symmetric double

application to mesoscopic fluctuations. These new results f%ell 1 From Eq.(4.15 it is easy to see that we have to prove
the double-well random matrix model which incorporate h f llowi o valent st/ s —0in th
spontaneous symmetry breaking effects are found fogall the following equation equivalent tap/ 5a;)y,, =0 in the

=1,2, and 4. It seems interesting to us that this simple syssingle-well problem:
tem, namelyN charges confined by a symmetric doublewell
with a logarithmic repulsion between the charges, exhibity i S\[o(V)] Py Nla(p)l
such rich behavior. p( )fx—csa WP(,U«)G,L—ga
Note addedIn Ref.[7] among other things the even part =) (A1)
of the two-point correlator Eq(5.9) has been found. After
this work was completed we became aware of R@f, in
which the odd part of the two-point correlator is also found V' (%) SV|a(¥)| V' (X) S\lo(x)]
by a method due to Shohat. _in
7B Ja

da 3 i J'd da
(X=N)(x—u)  7BJc (X=N)(X—u)
(A2)
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and discussions. over a large circle. The first term

G(z) Vo(z) dz 1
APPERDRCA 2§ w2 00 A

Equation(4.15 was derived under the assumption that a

counterpart of 6;/ 5ai)v‘bi=0. Here we prove this result for as for largez G(z)~1/z, \Jo(z) ~ 2%, 1/(z— u) (z—v) ~ 1/2?,
the asymmetric double wel[Following a similar procedure and 1z—a~1/z. The third term becomes

P(z)o(2) dz P(u)(u—b)(u—c)(u—d)—P(v)(v—b)(v—c)(v—d)
S o 2o (o) (A9)
|
while the second term is hand cut, M—X—ie=(P/X—=\)+ims(x—\) and \o(X)
=i¢,\|Vo(x)|, the second integral simplifies to
V'(2) Jo(z) dz
fﬁc(z—u)(z—v) (z—a) 2 % V(2 Vo (x) E
c(z—u)(z—v) (z—a) 2mi
_ Vo(u)V'(u) N Vo(v)V'(v)
(u-a)(u-v) (v—-aj(v—u) 1 (b V'(X)|Jo(x)|dx
1 (b V() Jox) T m)a(x= M) (x—p)(x—a)
i Ja (x=U)(x=v) (x-a)
) _i d V'(X)|Vo(x)|dx
T e e (A6) = vt (A7)
i J e (X=u)(

X—v) (x—a)’
Combining these three terms and simplifying we get Eq.
On usingu=\+ie andv=u+ie with \,u on the right- (A2), which is what is needed in order to get E4.15).



3910 E. BREZIN AND N. DEO PRE 59

[1] 3. Ambjorn, J. Jurkiewicz, and Yu. M. Makeenko, Phys. Lett. [6] G. Akemann and J. Ambjorn, J. Phys. 29, L555 (1996

B 251, 517(1990. G. Akemann, Nucl. Phys. B482 403 (1996; 507, 47
[2] E. Brezin and A. Zee, Nucl. Phys. B02, 613(1993. 5 (1997.
[3] C.W.J. Beenakker, Nucl. Phys. 2 515(1994; Phys. Rev. [7] N. Deo, Nucl. Phys. B504, 609 (1997).

Lett. 70, 1155(1993. [8] R.C. Brower, N. Deo, S. Jain, and C.I. Tan, Nucl. Phyg(B,
[4] E. Brezin and J. Zinn-Justin, Phys. Lett. 838 54 (1992. 166 (1993.

(5] M. l]_) Mehta, Random Matrices(Academic Press, London (9] E. Kanzieper and V. Freilikher, Phys. Rev5E, 6604(1998.
1991).



